Exercise 32

Find the orthogonal trajectories of the family of curves. Use a graphing device to draw several members of each family on a common screen.

$$
y=\frac{1}{x+k}
$$

Solution

To find the orthogonal trajectories, we have to solve for $y^{\prime}(x)$, set y_{\perp}^{\prime} equal to the negative reciprocal, and then solve for y_{\perp}. Start by differentiating both sides of the given equation with respect to x.

$$
\begin{align*}
\frac{d}{d x}(y) & =\frac{d}{d x}\left(\frac{1}{x+k}\right) \\
\frac{d y}{d x} & =-\frac{1}{(x+k)^{2}} \tag{1}
\end{align*}
$$

Solve the original equation for k. Multiply both sides by $x+k$.

$$
y(x+k)=1
$$

Distribute y.

$$
x y+k y=1
$$

Bring $x y$ to the right side.

$$
k y=1-x y
$$

Divide both sides by y.

$$
k=\frac{1-x y}{y}
$$

Plug the expression for k into equation (1).

$$
\frac{d y}{d x}=-\frac{1}{\left(x+\frac{1-x y}{y}\right)^{2}}
$$

Combine the two terms in the denominator.

$$
\frac{d y}{d x}=-\frac{1}{\left(\frac{x y+1-x y}{y}\right)^{2}}
$$

So we have

$$
\frac{d y}{d x}=-y^{2} .
$$

Here is where we introduce y_{\perp}.

$$
\frac{d y_{\perp}}{d x}=\frac{1}{y_{\perp}^{2}}
$$

Since this equation is separable, we can solve for y_{\perp} by bringing all terms with y_{\perp} to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
y_{\perp}^{2} d y_{\perp} & =d x \\
\int y_{\perp}^{2} d y_{\perp} & =\int d x \\
\frac{1}{3} y_{\perp}^{3} & =x+C
\end{aligned}
$$

Multiply both sides by 3 .

$$
y_{\perp}^{3}=3 x+3 C
$$

Take the cube root of both sides. Let $A=3 C$.

$$
y_{\perp}=\sqrt[3]{3 x+A}
$$

This is the family of curves orthogonal to $y=1 /(x+k)$.

Figure 1: Plot of $y=1 /(x+k)$ in blue $(k=0, \pm 5, \pm 10)$ and the orthogonal trajectories y_{\perp} in red ($A=0, \pm 5, \pm 10$).

